\(\int \cot ^4(c+d x) \csc (c+d x) (a+a \sin (c+d x))^2 \, dx\) [386]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F(-1)]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 27, antiderivative size = 116 \[ \int \cot ^4(c+d x) \csc (c+d x) (a+a \sin (c+d x))^2 \, dx=2 a^2 x+\frac {9 a^2 \text {arctanh}(\cos (c+d x))}{8 d}-\frac {a^2 \cos (c+d x)}{d}+\frac {2 a^2 \cot (c+d x)}{d}-\frac {2 a^2 \cot ^3(c+d x)}{3 d}+\frac {a^2 \cot (c+d x) \csc (c+d x)}{8 d}-\frac {a^2 \cot (c+d x) \csc ^3(c+d x)}{4 d} \]

[Out]

2*a^2*x+9/8*a^2*arctanh(cos(d*x+c))/d-a^2*cos(d*x+c)/d+2*a^2*cot(d*x+c)/d-2/3*a^2*cot(d*x+c)^3/d+1/8*a^2*cot(d
*x+c)*csc(d*x+c)/d-1/4*a^2*cot(d*x+c)*csc(d*x+c)^3/d

Rubi [A] (verified)

Time = 0.14 (sec) , antiderivative size = 116, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {2951, 3855, 3852, 8, 3853, 2718} \[ \int \cot ^4(c+d x) \csc (c+d x) (a+a \sin (c+d x))^2 \, dx=\frac {9 a^2 \text {arctanh}(\cos (c+d x))}{8 d}-\frac {a^2 \cos (c+d x)}{d}-\frac {2 a^2 \cot ^3(c+d x)}{3 d}+\frac {2 a^2 \cot (c+d x)}{d}-\frac {a^2 \cot (c+d x) \csc ^3(c+d x)}{4 d}+\frac {a^2 \cot (c+d x) \csc (c+d x)}{8 d}+2 a^2 x \]

[In]

Int[Cot[c + d*x]^4*Csc[c + d*x]*(a + a*Sin[c + d*x])^2,x]

[Out]

2*a^2*x + (9*a^2*ArcTanh[Cos[c + d*x]])/(8*d) - (a^2*Cos[c + d*x])/d + (2*a^2*Cot[c + d*x])/d - (2*a^2*Cot[c +
 d*x]^3)/(3*d) + (a^2*Cot[c + d*x]*Csc[c + d*x])/(8*d) - (a^2*Cot[c + d*x]*Csc[c + d*x]^3)/(4*d)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 2718

Int[sin[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-Cos[c + d*x]/d, x] /; FreeQ[{c, d}, x]

Rule 2951

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(
m_), x_Symbol] :> Dist[1/a^p, Int[ExpandTrig[(d*sin[e + f*x])^n*(a - b*sin[e + f*x])^(p/2)*(a + b*sin[e + f*x]
)^(m + p/2), x], x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && IntegersQ[m, n, p/2] && ((GtQ[m,
0] && GtQ[p, 0] && LtQ[-m - p, n, -1]) || (GtQ[m, 2] && LtQ[p, 0] && GtQ[m + p/2, 0]))

Rule 3852

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Dist[-d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 3853

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Csc[c + d*x])^(n - 1)/(d*(n
- 1))), x] + Dist[b^2*((n - 2)/(n - 1)), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n,
 1] && IntegerQ[2*n]

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps \begin{align*} \text {integral}& = \frac {\int \left (2 a^6-a^6 \csc (c+d x)-4 a^6 \csc ^2(c+d x)-a^6 \csc ^3(c+d x)+2 a^6 \csc ^4(c+d x)+a^6 \csc ^5(c+d x)+a^6 \sin (c+d x)\right ) \, dx}{a^4} \\ & = 2 a^2 x-a^2 \int \csc (c+d x) \, dx-a^2 \int \csc ^3(c+d x) \, dx+a^2 \int \csc ^5(c+d x) \, dx+a^2 \int \sin (c+d x) \, dx+\left (2 a^2\right ) \int \csc ^4(c+d x) \, dx-\left (4 a^2\right ) \int \csc ^2(c+d x) \, dx \\ & = 2 a^2 x+\frac {a^2 \text {arctanh}(\cos (c+d x))}{d}-\frac {a^2 \cos (c+d x)}{d}+\frac {a^2 \cot (c+d x) \csc (c+d x)}{2 d}-\frac {a^2 \cot (c+d x) \csc ^3(c+d x)}{4 d}-\frac {1}{2} a^2 \int \csc (c+d x) \, dx+\frac {1}{4} \left (3 a^2\right ) \int \csc ^3(c+d x) \, dx-\frac {\left (2 a^2\right ) \text {Subst}\left (\int \left (1+x^2\right ) \, dx,x,\cot (c+d x)\right )}{d}+\frac {\left (4 a^2\right ) \text {Subst}(\int 1 \, dx,x,\cot (c+d x))}{d} \\ & = 2 a^2 x+\frac {3 a^2 \text {arctanh}(\cos (c+d x))}{2 d}-\frac {a^2 \cos (c+d x)}{d}+\frac {2 a^2 \cot (c+d x)}{d}-\frac {2 a^2 \cot ^3(c+d x)}{3 d}+\frac {a^2 \cot (c+d x) \csc (c+d x)}{8 d}-\frac {a^2 \cot (c+d x) \csc ^3(c+d x)}{4 d}+\frac {1}{8} \left (3 a^2\right ) \int \csc (c+d x) \, dx \\ & = 2 a^2 x+\frac {9 a^2 \text {arctanh}(\cos (c+d x))}{8 d}-\frac {a^2 \cos (c+d x)}{d}+\frac {2 a^2 \cot (c+d x)}{d}-\frac {2 a^2 \cot ^3(c+d x)}{3 d}+\frac {a^2 \cot (c+d x) \csc (c+d x)}{8 d}-\frac {a^2 \cot (c+d x) \csc ^3(c+d x)}{4 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 6.65 (sec) , antiderivative size = 215, normalized size of antiderivative = 1.85 \[ \int \cot ^4(c+d x) \csc (c+d x) (a+a \sin (c+d x))^2 \, dx=-\frac {a^2 \left (192 \cot (c+d x)+\csc ^4\left (\frac {1}{2} (c+d x)\right ) (8+3 \csc (c+d x))-2 \csc ^2\left (\frac {1}{2} (c+d x)\right ) (64+3 \csc (c+d x))-24 \csc (c+d x) \left (16 (c+d x)+9 \log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right )-9 \log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right )\right )+8 (7+8 \cos (c+d x)) \sec ^4\left (\frac {1}{2} (c+d x)\right )+24 \csc ^3(c+d x) \sin ^2\left (\frac {1}{2} (c+d x)\right )-48 \csc ^5(c+d x) \sin ^4\left (\frac {1}{2} (c+d x)\right )\right ) \sin (c+d x) (1+\sin (c+d x))^2}{192 d \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )^4} \]

[In]

Integrate[Cot[c + d*x]^4*Csc[c + d*x]*(a + a*Sin[c + d*x])^2,x]

[Out]

-1/192*(a^2*(192*Cot[c + d*x] + Csc[(c + d*x)/2]^4*(8 + 3*Csc[c + d*x]) - 2*Csc[(c + d*x)/2]^2*(64 + 3*Csc[c +
 d*x]) - 24*Csc[c + d*x]*(16*(c + d*x) + 9*Log[Cos[(c + d*x)/2]] - 9*Log[Sin[(c + d*x)/2]]) + 8*(7 + 8*Cos[c +
 d*x])*Sec[(c + d*x)/2]^4 + 24*Csc[c + d*x]^3*Sin[(c + d*x)/2]^2 - 48*Csc[c + d*x]^5*Sin[(c + d*x)/2]^4)*Sin[c
 + d*x]*(1 + Sin[c + d*x])^2)/(d*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^4)

Maple [A] (verified)

Time = 0.30 (sec) , antiderivative size = 168, normalized size of antiderivative = 1.45

method result size
derivativedivides \(\frac {a^{2} \left (-\frac {\cos ^{5}\left (d x +c \right )}{2 \sin \left (d x +c \right )^{2}}-\frac {\left (\cos ^{3}\left (d x +c \right )\right )}{2}-\frac {3 \cos \left (d x +c \right )}{2}-\frac {3 \ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )}{2}\right )+2 a^{2} \left (-\frac {\left (\cot ^{3}\left (d x +c \right )\right )}{3}+\cot \left (d x +c \right )+d x +c \right )+a^{2} \left (-\frac {\cos ^{5}\left (d x +c \right )}{4 \sin \left (d x +c \right )^{4}}+\frac {\cos ^{5}\left (d x +c \right )}{8 \sin \left (d x +c \right )^{2}}+\frac {\left (\cos ^{3}\left (d x +c \right )\right )}{8}+\frac {3 \cos \left (d x +c \right )}{8}+\frac {3 \ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )}{8}\right )}{d}\) \(168\)
default \(\frac {a^{2} \left (-\frac {\cos ^{5}\left (d x +c \right )}{2 \sin \left (d x +c \right )^{2}}-\frac {\left (\cos ^{3}\left (d x +c \right )\right )}{2}-\frac {3 \cos \left (d x +c \right )}{2}-\frac {3 \ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )}{2}\right )+2 a^{2} \left (-\frac {\left (\cot ^{3}\left (d x +c \right )\right )}{3}+\cot \left (d x +c \right )+d x +c \right )+a^{2} \left (-\frac {\cos ^{5}\left (d x +c \right )}{4 \sin \left (d x +c \right )^{4}}+\frac {\cos ^{5}\left (d x +c \right )}{8 \sin \left (d x +c \right )^{2}}+\frac {\left (\cos ^{3}\left (d x +c \right )\right )}{8}+\frac {3 \cos \left (d x +c \right )}{8}+\frac {3 \ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )}{8}\right )}{d}\) \(168\)
parallelrisch \(\frac {a^{2} \left (-216 \left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )+3 \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+16 \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+384 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) x d -3 \left (\cot ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+3 \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-16 \left (\cot ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-224 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+384 d x -3 \left (\cot ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+384 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+224 \cot \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{192 d \left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\) \(184\)
risch \(2 a^{2} x -\frac {a^{2} {\mathrm e}^{i \left (d x +c \right )}}{2 d}-\frac {a^{2} {\mathrm e}^{-i \left (d x +c \right )}}{2 d}-\frac {a^{2} \left (3 \,{\mathrm e}^{7 i \left (d x +c \right )}+21 \,{\mathrm e}^{5 i \left (d x +c \right )}-96 i {\mathrm e}^{6 i \left (d x +c \right )}+21 \,{\mathrm e}^{3 i \left (d x +c \right )}+192 i {\mathrm e}^{4 i \left (d x +c \right )}+3 \,{\mathrm e}^{i \left (d x +c \right )}-160 i {\mathrm e}^{2 i \left (d x +c \right )}+64 i\right )}{12 d \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right )^{4}}-\frac {9 a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-1\right )}{8 d}+\frac {9 a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )}{8 d}\) \(186\)
norman \(\frac {-\frac {a^{2}}{64 d}-\frac {a^{2} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{12 d}-\frac {a^{2} \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{32 d}+\frac {13 a^{2} \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{12 d}+\frac {7 a^{2} \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{6 d}-\frac {7 a^{2} \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{6 d}-\frac {13 a^{2} \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{12 d}+\frac {a^{2} \left (\tan ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{32 d}+\frac {a^{2} \left (\tan ^{11}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{12 d}+\frac {a^{2} \left (\tan ^{12}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{64 d}+2 a^{2} x \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+4 a^{2} x \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+2 a^{2} x \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\frac {65 a^{2} \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{32 d}-\frac {65 a^{2} \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{32 d}}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{2}}-\frac {9 a^{2} \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 d}\) \(314\)

[In]

int(cos(d*x+c)^4*csc(d*x+c)^5*(a+a*sin(d*x+c))^2,x,method=_RETURNVERBOSE)

[Out]

1/d*(a^2*(-1/2/sin(d*x+c)^2*cos(d*x+c)^5-1/2*cos(d*x+c)^3-3/2*cos(d*x+c)-3/2*ln(csc(d*x+c)-cot(d*x+c)))+2*a^2*
(-1/3*cot(d*x+c)^3+cot(d*x+c)+d*x+c)+a^2*(-1/4/sin(d*x+c)^4*cos(d*x+c)^5+1/8/sin(d*x+c)^2*cos(d*x+c)^5+1/8*cos
(d*x+c)^3+3/8*cos(d*x+c)+3/8*ln(csc(d*x+c)-cot(d*x+c))))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 219 vs. \(2 (108) = 216\).

Time = 0.28 (sec) , antiderivative size = 219, normalized size of antiderivative = 1.89 \[ \int \cot ^4(c+d x) \csc (c+d x) (a+a \sin (c+d x))^2 \, dx=\frac {96 \, a^{2} d x \cos \left (d x + c\right )^{4} - 48 \, a^{2} \cos \left (d x + c\right )^{5} - 192 \, a^{2} d x \cos \left (d x + c\right )^{2} + 90 \, a^{2} \cos \left (d x + c\right )^{3} + 96 \, a^{2} d x - 54 \, a^{2} \cos \left (d x + c\right ) + 27 \, {\left (a^{2} \cos \left (d x + c\right )^{4} - 2 \, a^{2} \cos \left (d x + c\right )^{2} + a^{2}\right )} \log \left (\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) - 27 \, {\left (a^{2} \cos \left (d x + c\right )^{4} - 2 \, a^{2} \cos \left (d x + c\right )^{2} + a^{2}\right )} \log \left (-\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) - 32 \, {\left (4 \, a^{2} \cos \left (d x + c\right )^{3} - 3 \, a^{2} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{48 \, {\left (d \cos \left (d x + c\right )^{4} - 2 \, d \cos \left (d x + c\right )^{2} + d\right )}} \]

[In]

integrate(cos(d*x+c)^4*csc(d*x+c)^5*(a+a*sin(d*x+c))^2,x, algorithm="fricas")

[Out]

1/48*(96*a^2*d*x*cos(d*x + c)^4 - 48*a^2*cos(d*x + c)^5 - 192*a^2*d*x*cos(d*x + c)^2 + 90*a^2*cos(d*x + c)^3 +
 96*a^2*d*x - 54*a^2*cos(d*x + c) + 27*(a^2*cos(d*x + c)^4 - 2*a^2*cos(d*x + c)^2 + a^2)*log(1/2*cos(d*x + c)
+ 1/2) - 27*(a^2*cos(d*x + c)^4 - 2*a^2*cos(d*x + c)^2 + a^2)*log(-1/2*cos(d*x + c) + 1/2) - 32*(4*a^2*cos(d*x
 + c)^3 - 3*a^2*cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c)^4 - 2*d*cos(d*x + c)^2 + d)

Sympy [F(-1)]

Timed out. \[ \int \cot ^4(c+d x) \csc (c+d x) (a+a \sin (c+d x))^2 \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**4*csc(d*x+c)**5*(a+a*sin(d*x+c))**2,x)

[Out]

Timed out

Maxima [A] (verification not implemented)

none

Time = 0.48 (sec) , antiderivative size = 167, normalized size of antiderivative = 1.44 \[ \int \cot ^4(c+d x) \csc (c+d x) (a+a \sin (c+d x))^2 \, dx=\frac {32 \, {\left (3 \, d x + 3 \, c + \frac {3 \, \tan \left (d x + c\right )^{2} - 1}{\tan \left (d x + c\right )^{3}}\right )} a^{2} - 3 \, a^{2} {\left (\frac {2 \, {\left (5 \, \cos \left (d x + c\right )^{3} - 3 \, \cos \left (d x + c\right )\right )}}{\cos \left (d x + c\right )^{4} - 2 \, \cos \left (d x + c\right )^{2} + 1} + 3 \, \log \left (\cos \left (d x + c\right ) + 1\right ) - 3 \, \log \left (\cos \left (d x + c\right ) - 1\right )\right )} + 12 \, a^{2} {\left (\frac {2 \, \cos \left (d x + c\right )}{\cos \left (d x + c\right )^{2} - 1} - 4 \, \cos \left (d x + c\right ) + 3 \, \log \left (\cos \left (d x + c\right ) + 1\right ) - 3 \, \log \left (\cos \left (d x + c\right ) - 1\right )\right )}}{48 \, d} \]

[In]

integrate(cos(d*x+c)^4*csc(d*x+c)^5*(a+a*sin(d*x+c))^2,x, algorithm="maxima")

[Out]

1/48*(32*(3*d*x + 3*c + (3*tan(d*x + c)^2 - 1)/tan(d*x + c)^3)*a^2 - 3*a^2*(2*(5*cos(d*x + c)^3 - 3*cos(d*x +
c))/(cos(d*x + c)^4 - 2*cos(d*x + c)^2 + 1) + 3*log(cos(d*x + c) + 1) - 3*log(cos(d*x + c) - 1)) + 12*a^2*(2*c
os(d*x + c)/(cos(d*x + c)^2 - 1) - 4*cos(d*x + c) + 3*log(cos(d*x + c) + 1) - 3*log(cos(d*x + c) - 1)))/d

Giac [A] (verification not implemented)

none

Time = 0.38 (sec) , antiderivative size = 162, normalized size of antiderivative = 1.40 \[ \int \cot ^4(c+d x) \csc (c+d x) (a+a \sin (c+d x))^2 \, dx=\frac {3 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} + 16 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 384 \, {\left (d x + c\right )} a^{2} - 216 \, a^{2} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}\right ) - 240 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \frac {384 \, a^{2}}{\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1} + \frac {450 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} + 240 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 16 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 3 \, a^{2}}{\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4}}}{192 \, d} \]

[In]

integrate(cos(d*x+c)^4*csc(d*x+c)^5*(a+a*sin(d*x+c))^2,x, algorithm="giac")

[Out]

1/192*(3*a^2*tan(1/2*d*x + 1/2*c)^4 + 16*a^2*tan(1/2*d*x + 1/2*c)^3 + 384*(d*x + c)*a^2 - 216*a^2*log(abs(tan(
1/2*d*x + 1/2*c))) - 240*a^2*tan(1/2*d*x + 1/2*c) - 384*a^2/(tan(1/2*d*x + 1/2*c)^2 + 1) + (450*a^2*tan(1/2*d*
x + 1/2*c)^4 + 240*a^2*tan(1/2*d*x + 1/2*c)^3 - 16*a^2*tan(1/2*d*x + 1/2*c) - 3*a^2)/tan(1/2*d*x + 1/2*c)^4)/d

Mupad [B] (verification not implemented)

Time = 10.01 (sec) , antiderivative size = 265, normalized size of antiderivative = 2.28 \[ \int \cot ^4(c+d x) \csc (c+d x) (a+a \sin (c+d x))^2 \, dx=\frac {a^2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{12\,d}+\frac {a^2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4}{64\,d}-\frac {9\,a^2\,\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{8\,d}-\frac {4\,a^2\,\mathrm {atan}\left (\frac {16\,a^4}{9\,a^4+16\,a^4\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}-\frac {9\,a^4\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{9\,a^4+16\,a^4\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d}-\frac {5\,a^2\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{4\,d}-\frac {-20\,a^2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5+32\,a^2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4-\frac {56\,a^2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{3}+\frac {a^2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{4}+\frac {4\,a^2\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{3}+\frac {a^2}{4}}{d\,\left (16\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6+16\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4\right )} \]

[In]

int((cos(c + d*x)^4*(a + a*sin(c + d*x))^2)/sin(c + d*x)^5,x)

[Out]

(a^2*tan(c/2 + (d*x)/2)^3)/(12*d) + (a^2*tan(c/2 + (d*x)/2)^4)/(64*d) - (9*a^2*log(tan(c/2 + (d*x)/2)))/(8*d)
- (4*a^2*atan((16*a^4)/(9*a^4 + 16*a^4*tan(c/2 + (d*x)/2)) - (9*a^4*tan(c/2 + (d*x)/2))/(9*a^4 + 16*a^4*tan(c/
2 + (d*x)/2))))/d - (5*a^2*tan(c/2 + (d*x)/2))/(4*d) - ((a^2*tan(c/2 + (d*x)/2)^2)/4 - (56*a^2*tan(c/2 + (d*x)
/2)^3)/3 + 32*a^2*tan(c/2 + (d*x)/2)^4 - 20*a^2*tan(c/2 + (d*x)/2)^5 + a^2/4 + (4*a^2*tan(c/2 + (d*x)/2))/3)/(
d*(16*tan(c/2 + (d*x)/2)^4 + 16*tan(c/2 + (d*x)/2)^6))